SOAL UAS Network Security

Gambarkan arsitektur jaringan komputer di tempat anda bekerja atau tempat anda kuliah serta sistem keamanan jaringannya. Penilaian akan dilihat berdasarkan komponen jaringanya, sistem keamanan jaringan yang digunakan.

Jawaban dikirim ke email inaylaksi@gmail.com paling lambat tanggal 19 Nopember 2011 jam 24.00. lewat dari jam dan tanggal tersebut maka jawaban tidak diterima dan dianggap tidak mengkikuti UAS.



NETWORK TOPOLOGY

Network topology is the layout pattern of interconnections of the various elements (links, nodes, etc.) of a computer[1][2] or biological network.[3] Network topologies may be physical or logical. Physical topology refers to the physical design of a network including the devices, location and cable installation. Logical topology refers to how data is actually transferred in a network as opposed to its physical design. In general physical topology relates to a core network whereas logical topology relates to basic network.

Topology can be understood as the shape or structure of a network. This shape does not necessarily correspond to the actual physical design of the devices on the computer network. The computers on a home network can be arranged in a circle but it does not necessarily mean that it represents a ring topology.

Any particular network topology is determined only by the graphical mapping of the configuration of physical and/or logical connections between nodes. The study of network topology uses graph theory. Distances between nodes, physical interconnections, transmission rates, and/or signal types may differ in two networks and yet their topologies may be identical.

A local area network (LAN) is one example of a network that exhibits both a physical topology and a logical topology. Any given node in the LAN has one or more links to one or more nodes in the network and the mapping of these links and nodes in a graph results in a geometric shape that may be used to describe the physical topology of the network. Likewise, the mapping of the data flow between the nodes in the network determines the logical topology of the network. The physical and logical topologies may or may not be identical in any particular network.

There are two basic categories of network topologies:[4]
Physical topologies
Logical topologies

The shape of the cabling layout used to link devices is called the physical topology of the network. This refers to the layout of cabling, the locations of nodes, and the interconnections between the nodes and the cabling.[1] The physical topology of a network is determined by the capabilities of the network access devices and media, the level of control or fault tolerance desired, and the cost associated with cabling or telecommunications circuits.

The logical topology, in contrast, is the way that the signals act on the network media, or the way that the data passes through the network from one device to the next without regard to the physical interconnection of the devices. A network's logical topology is not necessarily the same as its physical topology. For example, the original twisted pair Ethernet using repeater hubs was a logical bus topology with a physical star topology layout. Token Ring is a logical ring topology, but is wired a physical star from the Media Access Unit.

The logical classification of network topologies generally follows the same classifications as those in the physical classifications of network topologies but describes the path that the data takes between nodes being used as opposed to the actual physical connections between nodes. The logical topologies are generally determined by network protocols as opposed to being determined by the physical layout of cables, wires, and network devices or by the flow of the electrical signals, although in many cases the paths that the electrical signals take between nodes may closely match the logical flow of data, hence the convention of using the terms logical topology and signal topology interchangeably.

Logical topologies are often closely associated with Media Access Control methods and protocols. Logical topologies are able to be dynamically reconfigured by special types of equipment such as routers and switches.

The study of network topology recognizes seven basic topologies:[5]
Point-to-point
Bus
Star
Ring
Mesh
Tree
Hybrid
Daisy chain
Point-to-point

The simplest topology is a permanent link between two endpoints. Switched point-to-point topologies are the basic model of conventional telephony. The value of a permanent point-to-point network is unimpeded communications between the two endpoints. The value of an on-demand on is proportional to the number of potential pairs of subscribers, and has been expressed as Metcalfe's Law. Permanent (dedicated) Easiest to understand, of the variations of point-to-point topology, is a point-to-point communications channel that appears, to the user, to be permanently associated with the two endpoints. A children's tin can telephone is one example of a physical dedicated channel. Within many switched telecommunications systems, it is possible to establish a permanent circuit. One example might be a telephone in the lobby of a public building, which is programmed to ring only the number of a telephone dispatcher. "Nailing down" a switched connection saves the cost of running a physical circuit between the two points. The resources in such a connection can be released when no longer needed, for example, a television circuit from a parade route back to the studio. Switched: Using circuit-switching or packet-switching technologies, a point-to-point circuit can be set up dynamically, and dropped when no longer needed. This is the basic mode of conventional telephony.
Bus
Main article: Bus network



Bus network topology In local area networks where bus topology is used, each node is connected to a single cable. Each computer or server is connected to the single bus cable. A signal from the source travels in both directions to all machines connected on the bus cable until it finds the intended recipient. If the machine address does not match the intended address for the data, the machine ignores the data. Alternatively, if the data does match the machine address, the data is accepted. Since the bus topology consists of only one wire, it is rather inexpensive to implement when compared to other topologies. However, the low cost of implementing the technology is offset by the high cost of managing the network. Additionally, since only one cable is utilized, it can be the single point of failure. If the network cable breaks, the entire network will be down. Linear bus The type of network topology in which all of the nodes of the network are connected to a common transmission medium which has exactly two endpoints (this is the 'bus', which is also commonly referred to as the backbone, or trunk) – all data that is transmitted between nodes in the network is transmitted over this common transmission medium and is able to be received by all nodes in the network simultaneously.[1] Note: The two endpoints of the common transmission medium are normally terminated with a device called a terminator that exhibits the characteristic impedance of the transmission medium and which dissipates or absorbs the energy that remains in the signal to prevent the signal from being reflected or propagated back onto the transmission medium in the opposite direction, which would cause interference with and degradation of the signals on the transmission medium. Distributed bus The type of network topology in which all of the nodes of the network are connected to a common transmission medium which has more than two endpoints that are created by adding branches to the main section of the transmission medium – the physical distributed bus topology functions in exactly the same fashion as the physical linear bus topology (i.e., all nodes share a common transmission medium). Notes:
All of the endpoints of the common transmission medium are normally terminated.
The linear bus topology is sometimes considered to be a special case of the distributed bus topology – i.e., a distributed bus with no branching segments.
The physical distributed bus topology is sometimes incorrectly referred to as a physical tree topology – however, although the physical distributed bus topology resembles the physical tree topology, it differs from the physical tree topology in that there is no central node to which any other nodes are connected, since this hierarchical functionality is replaced by the common bus.
Star
Main article: Star network



Star network topology In local area networks with a star topology, each network host is connected to a central hub with a point-to-point connection. All traffic that traverses the network passes through the central hub. The hub acts as a signal repeater. The star topology is considered the easiest topology to design and implement. An advantage of the star topology is the simplicity of adding additional nodes. The primary disadvantage of the star topology is that the hub represents a single point of failure. Notes
A point-to-point link (described above) is sometimes categorized as a special instance of the physical star topology – therefore, the simplest type of network that is based upon the physical star topology would consist of one node with a single point-to-point link to a second node, the choice of which node is the 'hub' and which node is the 'spoke' being arbitrary.[1]
After the special case of the point-to-point link, as in note (1) above, the next simplest type of network that is based upon the physical star topology would consist of one central node – the 'hub' – with two separate point-to-point links to two peripheral nodes – the 'spokes'.
Although most networks that are based upon the physical star topology are commonly implemented using a special device such as a hub or switch as the central node (i.e., the 'hub' of the star), it is also possible to implement a network that is based upon the physical star topology using a computer or even a simple common connection point as the 'hub' or central node.[citation needed]
Star networks may also be described as either broadcast multi-access or nonbroadcast multi-access (NBMA), depending on whether the technology of the network either automatically propagates a signal at the hub to all spokes, or only addresses individual spokes with each communication. Extended star A type of network topology in which a network that is based upon the physical star topology has one or more repeaters between the central node (the 'hub' of the star) and the peripheral or 'spoke' nodes, the repeaters being used to extend the maximum transmission distance of the point-to-point links between the central node and the peripheral nodes beyond that which is supported by the transmitter power of the central node or beyond that which is supported by the standard upon which the physical layer of the physical star network is based. If the repeaters in a network that is based upon the physical extended star topology are replaced with hubs or switches, then a hybrid network topology is created that is referred to as a physical hierarchical star topology, although some texts make no distinction between the two topologies. Distributed Star A type of network topology that is composed of individual networks that are based upon the physical star topology connected together in a linear fashion – i.e., 'daisy-chained' – with no central or top level connection point (e.g., two or more 'stacked' hubs, along with their associated star connected nodes or 'spokes').
Ring
Main article: Ring network



Ring network topology A network topology that is set up in a circular fashion in which data travels around the ring in one direction and each device on the right acts as a repeater to keep the signal strong as it travels. Each device incorporates a receiver for the incoming signal and a transmitter to send the data on to the next device in the ring. The network is dependent on the ability of the signal to travel around the ring.[4]
Mesh
Main article: Mesh networking

The value of fully meshed networks is proportional to the exponent of the number of subscribers, assuming that communicating groups of any two endpoints, up to and including all the endpoints, is approximated by Reed's Law.


Fully connected



Fully connected mesh topology

The number of connections in a full mesh = n(n - 1) / 2. Note: The physical fully connected mesh topology is generally too costly and complex for practical networks, although the topology is used when there are only a small number of nodes to be interconnected. Partially connected



Partially connected mesh topology The type of network topology in which some of the nodes of the network are connected to more than one other node in the network with a point-to-point link – this makes it possible to take advantage of some of the redundancy that is provided by a physical fully connected mesh topology without the expense and complexity required for a connection between every node in the network. Note: In most practical networks that are based upon the partially connected mesh topology, all of the data that is transmitted between nodes in the network takes the shortest path between nodes,[citation needed] except in the case of a failure or break in one of the links, in which case the data takes an alternative path to the destination. This requires that the nodes of the network possess some type of logical 'routing' algorithm to determine the correct path to use at any particular time.
Tree
Main article: Tree network



Tree network topology

This section may be confusing or unclear to readers. Please help clarify the section; suggestions may be found on the talk page. (June 2011)


The type of network topology in which a central 'root' node (the top level of the hierarchy) is connected to one or more other nodes that are one level lower in the hierarchy (i.e., the second level) with a point-to-point link between each of the second level nodes and the top level central 'root' node, while each of the second level nodes that are connected to the top level central 'root' node will also have one or more other nodes that are one level lower in the hierarchy (i.e., the third level) connected to it, also with a point-to-point link, the top level central 'root' node being the only node that has no other node above it in the hierarchy (The hierarchy of the tree is symmetrical.) Each node in the network having a specific fixed number, of nodes connected to it at the next lower level in the hierarchy, the number, being referred to as the 'branching factor' of the hierarchical tree.This tree has individual peripheral nodes.
A network that is based upon the physical hierarchical topology must have at least three levels in the hierarchy of the tree, since a network with a central 'root' node and only one hierarchical level below it would exhibit the physical topology of a star.
A network that is based upon the physical hierarchical topology and with a branching factor of 1 would be classified as a physical linear topology.
The branching factor, f, is independent of the total number of nodes in the network and, therefore, if the nodes in the network require ports for connection to other nodes the total number of ports per node may be kept low even though the total number of nodes is large – this makes the effect of the cost of adding ports to each node totally dependent upon the branching factor and may therefore be kept as low as required without any effect upon the total number of nodes that are possible.
The total number of point-to-point links in a network that is based upon the physical hierarchical topology will be one less than the total number of nodes in the network.
If the nodes in a network that is based upon the physical hierarchical topology are required to perform any processing upon the data that is transmitted between nodes in the network, the nodes that are at higher levels in the hierarchy will be required to perform more processing operations on behalf of other nodes than the nodes that are lower in the hierarchy. Such a type of network topology is very useful and highly recommended.

definition : A tree topology connects multiple star topologies together onto a common single cable.
Hybrid

Hybrid networks use a combination of any two or more topologies in such a way that the resulting network does not exhibit one of the standard topologies (e.g., bus, star, ring, etc.). For example, a tree network connected to a tree network is still a tree network topology. A hybrid topology is always produced when two different basic network topologies are connected. Two common examples for Hybrid network are: star ring network and star bus network
A Star ring network consists of two or more star topologies connected using a multistation access unit (MAU) as a centralized hub.
A Star Bus network consists of two or more star topologies connected using a bus trunk (the bus trunk serves as the network's backbone).

While grid networks have found popularity in high-performance computing applications, some systems have used genetic algorithms to design custom networks that have the fewest possible hops in between different nodes. Some of the resulting layouts are nearly incomprehensible, although they function quite well.

A Snowflake topology is really a "Star of Stars" network, so it exhibits characteristics of a hybrid network topology but is not composed of two different basic network topologies being connected together.
Daisy chain

Except for star-based networks, the easiest way to add more computers into a network is by daisy-chaining, or connecting each computer in series to the next. If a message is intended for a computer partway down the line, each system bounces it along in sequence until it reaches the destination. A daisy-chained network can take two basic forms: linear and ring.
A linear topology puts a two-way link between one computer and the next. However, this was expensive in the early days of computing, since each computer (except for the ones at each end) required two receivers and two transmitters.
By connecting the computers at each end, a ring topology can be formed. An advantage of the ring is that the number of transmitters and receivers can be cut in half, since a message will eventually loop all of the way around. When a node sends a message, the message is processed by each computer in the ring. If a computer is not the destination node, it will pass the message to the next node, until the message arrives at its destination. If the message is not accepted by any node on the network, it will travel around the entire ring and return to the sender. This potentially results in a doubling of travel time for data.
Centralization

The star topology reduces the probability of a network failure by connecting all of the peripheral nodes (computers, etc.) to a central node. When the physical star topology is applied to a logical bus network such as Ethernet, this central node (traditionally a hub) rebroadcasts all transmissions received from any peripheral node to all peripheral nodes on the network, sometimes including the originating node. All peripheral nodes may thus communicate with all others by transmitting to, and receiving from, the central node only. The failure of a transmission line linking any peripheral node to the central node will result in the isolation of that peripheral node from all others, but the remaining peripheral nodes will be unaffected. However, the disadvantage is that the failure of the central node will cause the failure of all of the peripheral nodes also,

If the central node is passive, the originating node must be able to tolerate the reception of an echo of its own transmission, delayed by the two-way round trip transmission time (i.e. to and from the central node) plus any delay generated in the central node. An active star network has an active central node that usually has the means to prevent echo-related problems.

A tree topology (a.k.a. hierarchical topology) can be viewed as a collection of star networks arranged in a hierarchy. This tree has individual peripheral nodes (e.g. leaves) which are required to transmit to and receive from one other node only and are not required to act as repeaters or regenerators. Unlike the star network, the functionality of the central node may be distributed.

As in the conventional star network, individual nodes may thus still be isolated from the network by a single-point failure of a transmission path to the node. If a link connecting a leaf fails, that leaf is isolated; if a connection to a non-leaf node fails, an entire section of the network becomes isolated from the rest.

In order to alleviate the amount of network traffic that comes from broadcasting all signals to all nodes, more advanced central nodes were developed that are able to keep track of the identities of the nodes that are connected to the network. These network switches will "learn" the layout of the network by "listening" on each port during normal data transmission, examining the data packets and recording the address/identifier of each connected node and which port it's connected to in a lookup table held in memory. This lookup table then allows future transmissions to be forwarded to the intended destination only.
Decentralization

In a mesh topology (i.e., a partially connected mesh topology), there are at least two nodes with two or more paths between them to provide redundant paths to be used in case the link providing one of the paths fails. This decentralization is often used to advantage to compensate for the single-point-failure disadvantage that is present when using a single device as a central node (e.g., in star and tree networks). A special kind of mesh, limiting the number of hops between two nodes, is a hypercube. The number of arbitrary forks in mesh networks makes them more difficult to design and implement, but their decentralized nature makes them very useful. This is similar in some ways to a grid network, where a linear or ring topology is used to connect systems in multiple directions. A multi-dimensional ring has a toroidal topology, for instance.

A fully connected network, complete topology or full mesh topology is a network topology in which there is a direct link between all pairs of nodes. In a fully connected network with n nodes, there are n(n-1)/2 direct links. Networks designed with this topology are usually very expensive to set up, but provide a high degree of reliability due to the multiple paths for data that are provided by the large number of redundant links between nodes. This topology is mostly seen in military applications.



PERTANYAAN

Jelaskan kelebihan dan kelemahan dari jenis topology : Point-to-point, Bus,Star,Ring,Mesh,Tree,Hybrid dan Daisy chain.

The Problem 

In the rush to benefit from using the Internet, organizations often overlook significant risks.
the engineering practices and technology used by system providers do not produce systems that are immune to attack network and system operators do not have the people and practices to defend against attacks and minimize damage policy and law in cyber-space are immature and lag the pace of change
There is continued movement to complex,client-server and heterogeneous configurations with distributed management.
There is little evidence of security improvements in most products; new vulnerabilities are found routinely.
Comprehensive security solutions are lacking; current tools address only parts of the problem
Engineering for ease of use has not been matched by engineering for ease of secure administration
ease of use and increased utility are driving a dramatic explosion in use system administration and security administration are more difficult than a decade ago


It’s going to get worse
Explosive growth of the Internet continues ,continues to double in size every 10-12 months where will all the capable system administrators come from?

Market growth will drive vendors time to market, features, performance, cost  are primary “invisible” quality features such as security are secondary.


More sensitive applications connected to the Internet
  • low cost of communications, ease of connection, and power of products engineered for the Internet will drive out other forms of networking
  • hunger for data and benefits of electronic interaction will continue to push widespread use of information technology 
  • The market for security products and services is growing faster than the supply of quality product and service providers
    An informed consumer base needs understanding, not just awareness
    Sometimes the suppliers don’t understand either
    “If you want it badly, you’ll get it badly”

Increased understanding by technology users will build demand for quality security products; vendors will pay attention to the market.Technology will continue to improve:
  • encryption
  • strong authentication
  • survivable systems
  • Increased collaboration across government and industry
  • Strong market for security professionals will eventually drive graduate and certificate programs


Pertanyaan
1. Apa masalahnya?
2. Mengapa masalahnya semakin besar?
3. Apa yang harus dikembangkan dari teknologi untuk menghadapi masalah tersebut?

Network Security



Internet is Indispensable to Business
The Internet allows organizations to:

  • conduct electronic commerce
  • provide better customer service
  • collaborate with partners
  • reduce communications costs
  • improve internal communication
  • access needed information rapidly


The Risks

 
Network attacks lead to lost:
  • money
  • time
  • products
  • reputation
  • sensitive information
  
Security Implications

Vulnerabilities

From weak design, to “feature-rich” implementation, to compromised entity
Heterogeneous networking technologies adds to security complexity
But improves survivability
Higher-speed communication puts more information at risk in given time period
Easier to attack than to defend
Ubiquitous access increases exposure to risks

The Bad News

Information infrastructure as a whole is very vulnerable, which makes all critical national infrastructure vulnerable
Denial-of-service attacks are particularly dangerous to the Internet infrastructure
Do we continue to band-aid or re-design?
Serious lack of effective technologies, policies, and management framework

The Good News
Plenty of basic means for end-user protection - authentication, access control, integrity checking
Intensive R&D effort on security solutions (government sponsored research & private industry development)
Increasing public awareness of security issues
New crops of security(-aware) researchers and engineers

Security
Security is concerned with preventing undesired behavior
An enemy/opponent/hacker/adversary may be actively and maliciously trying to circumvent any protective measures you put in place
Goal

Security is always a trade-off
The goal should never be “to make the system as secure as possible”…
but instead, “to make the system as secure as possible within certain constraints” (cost, usability, convenience)

Cost-benefit analysis
Important to evaluate what level of security is necessary/appropriate
Cost of mounting a particular attack vs. value of attack to an adversary
Cost of damages from an attack vs. cost of defending against the attack
Likelihood of a particular attack
More security not always better
No point in putting a higher post in the ground when the enemy can go around it”
Need to identify the weakest link
Security of a system is only as good as the security at its weakest point…
Security is not a “magic bullet”
Security is a process, not a product
Human factors
E.g., passwords…
Outsider vs. insider attacks
Software misconfiguration
Not applying security patches
Social engineering
Physical security

Pertanyaan
1. Apa Berita baik dan buruknya?
2. Jelaskan  Analisa biaya manfaat untuk network security?
3. Security is not a “magic bullet” , maksudnya?
4.The goal should never be “to make the system as secure as possible”…

but instead, “to make the system as secure as possible within certain constraints” (cost, usability, convenience). Jelaskan maksud kalimat tersebut?
5. Apa yang dimaksud dengan "social engineering" pada human factor?

JARINGAN KOMPUTER

Jaringan komputer (yang selanjutnya akan dibahas dengan menggunakan istilah
jaringan’) adalah sekelompok komputer otonom yang saling berhubungan antara
yang satu dengan lainnya, dan menggunakan suatu protokol komunikasi melalui
media komunikasi sehingga dapat saling berbagi dan bertukar informasi.
Pada saat ini, jaringan komputer yang paling populer adalah jaringan lokal, atau
yang lebih dikenal dengan Local Area Network (LAN). LAN adalah sekelompok
komputer yang saling berhubungan dalam area tertentu. Dengan LAN, komputerkomputer
yang terhubung dapat saling bertukar atau berbagi pakai dalam data,
perangkat pendukung (mis: printer), dan sebagainya.
Sesuai dengan perkembangan dan populernya Internet dan Intranet, jaringan
komputer dapat ditingkatkan kemampuannya untuk melakukan keperluan yang lebih
luas lagi, seperti Internet.

Jaringan komputer digunakan untuk melakukan tukar menukar atau komunikasi
data. Komponen-komponen dalam komunikasi data adalah sebagai berikut:
Komputer host
Komputer host adalah komputer yang berfungsi sebagai penyebar informasi atau
data. Host dapat berupa komputer mainframe atau komputer mini. Host yang
berupa mainframe bekerja dengan menggunakan peralatan yang disebut dengan
Front and Processor (FEP), yang merupakan komputer mini untuk mengelola
komunikasi data dari jaringan.
Komputer receiver
Komputer ini berfungsi sebagai penerima informasi
Data
Data adalah objek dari proses komunikasi yang terjadi pada jaringan.
Protokol komunikasi
Protokol komunikasi adalah peraturan-peraturan yang diterapkan dalam jaringan
dengan tujuan untuk mengatur komunikasi data. Banyaknya protokol komunikasi
menyebabkan dibutuhkannya suatu alat (tools) yang disebut dengan Gateway,
untuk menterjemahkan protokol sehingga menjadi compatible agar komunikasi
data dijaringan dapat berjalan dengan baik.
Komponen transmisi
Setelah memastikan komputer host dan receiver berjalan dengan baik, serta
memilih protokol komunikasi, dilakukan implementtasi terhadap komponen
transmisi, seperti kabel penghubung, modem, dan sebagainya.


INSTALASI JARINGAN

Agar suatu jaringan LAN atau Workgroup dapat terbentuk, selain harus memiliki
komputer Server dan Workstation, juga diperlukan perangkat keras lain yang
mendukung jaringan tersebut.
Selain hardware, sistem operasi harus diinstal agar jaringan dapat berfungsi dengan
baik. Sistem operasi yang ada antara lain Windows Server 200, Windows Server
2003, dsb. Untuk lebih jelasnya, akan dijabarkan lebih rinci di bawah ini.
Keperluan Pembuatan Jaringan
Untuk membuat suatu sistem jaringan diperlukan beberapa peralatan antara lain
sebagai berikut:
1. Sebuah komputer file-server atau yang lebih dikenal dengan server, sebagai
pusat data.
2. Komputer sebagai tempat kerja atau yang disebut dengan workstation. Jumlah
dari workstation bervariasi, muulai dari satu hingga ratusan.
3. NIC (Network Interface Card)
4. Wireless LAN
5. HUB atau Switch
6.Switch Wireless
7. Kabel UTP
8. Kabel Telepon
9. Connector RJ45 dan RJ11
10. VDSL Converter
11. UPS jika diperlukan

Peralatan jaringan tersebut merupakan kebutuhan standar untuk membuat sebuah
jaringan. Apabila jaringan ingin ditingkatkan harus dilakukan penambahan beberapa
peralatan sebagai berikut:

1. Repeater
2. Bridge
3. Router
4. Gateway

Network Interface Card (NIC)
NIC adalah kartu jaringanyang berupa papan elektronik yang akan dipasang pada
setiap komputer yang terhubung pada jaringan. Saat ini, banyak sekali jenis
kartu jaringan. Akan tetapi, ada beberapa hal yang perlu diketahui dari kartu
jaringan seperti tipe kartu, jenis protokol dan tipe kabel yang didukungnya.
Dengan perkembangan PC dan mainboard, maka tipe solt dan expansion slot pun
bermacam-macam. Akan tetapi pada modul ini cukup dibahas mengenai ISA dan
PCI. Ketika membeli komputer (khususnya komputer rakitan), tidak semua slot
terisi. Slot yang kosong dapat digunakan untuk melakukan pemasangan kartu
tambahan (mis: kartu suara, modem internal, atau kartu jaringan). Untuk
membedakan slot ISA dan PCI tidak begitu sulit. Jika casing komputer dibuka,
slot ISA biasanya berwarna hitam, sedangkan PCI berwarna putih. Untuk slot
yang bewarna coklat umumnya adalah slot AGP.
Untuk protokol jaringan, ada beberapa protokol untuk sebuah kartu jaringan
seperti Ethernet, Fast Ethernet, Token Ring, FDDI, dan ATM. Jenis Ethernet atau
Fast Ethernet sering digunakan.
Penggunaan hub dapat dikembangkan dengan mengaitkan suatu hub ke hub
lainnya. Sedangkan dari segi pengelolaannya, HUB dibagi menjadi dua jenis,
sebagai berikut:
Hub manageable
Hub jenis ini bisa dikelola dengan software yang ada di bawahnya.
Hub non-managable
Hub jenis ini pengelolaannya dilakukan secara manual.
Hub hanya memungkinkan user untuk berbagi jalur yang sama. Pada jaringan
tersebut, tiap user hanya akan mendapatkan kecepatan dari bandwith yang ada.
Misalkan jaringan yang digunakan adalah Ethernet 10 Mbps dan pada jaringan
tersebut tersambung 10 unit komputer. Jika semua komputer tersambung ke
jaringan secara bersamaan, maka bandwith yang dapat digunakan oleh masingmasing
user rata-rata adalah 1 Mbps.
Repeater
Repeater hampir sama seperti Hub. Repeater menggunakan topologi bus, yang
bekerja memperkuat sinyal agar lalu lintas data dari workstation (client) ke
server atau sebaliknya lebih cepat jika jaraknya semakin jauh. Dengan repeater
ini, jaringan dan sinyal akan semakin kuat, apalagi jika kabel yang digunakan
adalah jenis koaksial.

Bridge (jembatan)
Bridge, sesuai dengan namanya, berfungsi menghubungkan beberapa jaringan
yang terpisah, untuk jaringan yang sama maupun berbeda. Bridge memetakan
alamat jaringan dan hanya memperbolehkan lalu lintas data yang diperlukan.
Ketika menerima sebuah paket, bridge menentukan segmen tujuan dan sumber.
Jika segmennya sama, maka paket akan ditolak. Bridge juga dapat mencegah
pesan rusak agar tidak menyebar keluar dari suatu segmen.
Switch
Switch dikenal juga dengan istilah LAN switch merupakan perluasan dari bridge.
Ada dua buah arsitektur switch, sebagai berikut:
Cut through
Kelebihan dari arsitektur switch ini terletak pada kecepatan, karena pada saat
sebuah paket datang, switch hanya memperhatikan alamat tujuan sebelum
diteruskan ke segmen tujuannya.
Store and forward
Switch ini menerima dan menganalisa seluruh isi paket sebelum
meneruskannya k etujuan dan untuknya memerlukan waktu.
Keuntungan menggunakan switch adalah karena setiap segmen jaringan memiliki
bandwith 10 Mbps penuh, tidak terbagi seperti pada hub.
VDSL
Very high-bit-rate Digital Subscriber Line port merupakan alat yang berguna
sebagai converter dari label UTP ke kabel telepon. VDSL biasanya digunakan
untuk menghubungkan jaringan LAN yang jaraknya kurang dari 500 meter.
Untuk menggunakannya harus sepasang, satu dipasang di Switch atau Hub yang
berhubungan dengan server. Sedangkan yang satu lagi, dipasang di Switch atau
Hub yang berhubungan dengan client.
Wireless
Ada bermacam-macam merk dan jenis dari wireless. Beberapa notebook sudah
memasang wireless secara otomatis. Untuk memanfaatkan wireless yang sudah
ada di komputer atau memasang sebagai kartu jaringan, user harus memiliki Hub
atau Switch yang ada fasilitas wirelessnya.
Router
Cara kerja router mirip dengan switch dan bridge. Perbedaannya, router adalah
penyaring atau filter lalu lintas data. Penyaringan dilakukan dengan
menggunakan protokol tertentu. Router bukanlah perangkat fisikal, melainkan
logikal. Misalnya sebuah IP router dapat membagi jaringan menjadi beberapa
subnet sehingga hanya lalu lintas yang ditujukan untuk IP adress tertentu yang
dapat mengalir dari suatu segmen ke segmen lainnya.
Kabel jaringan
Kabel jaringan yang biasanya digunakan untuk suatu jaringan antara lain adalah
UTP (unshielded twisted pair), koaksial, dan serat optik. Sesuai dengan
perkembangan Hub, penggunaan kabel UTP lebih sering dipilih. Hal ini
dikarenakan harganya yang tidak mahal dan kemampuannya yang dapat
diandalkan.
Twisted Pair Cable (UTP)
Ada dua buah jenis kabel UTP yakni shielded dan unshielded. Shielded adalah
kabel yang memiliki selubung pembungkus. Sedangkan unshielded tidak
memiliki selubung pembungkus. Untuk koneksinya digunakan konektor RJ11
atau RJ-45.
UTP cocok untuk jaringan dengan skala dari kecil hingga besar. Dengan
menggunakan UTP, jaringan disusun berdasarkan topologi star dengan hub
sebagai pusatnya. Kabel ini umumnya lebih reliable dibandingkan dengan
kabel koaksial. Hal ini dikarenakan Hub memiliki kemampuan dara error
correction yang akan meningkatkan kecepatan transmisi.
Ada beberapa kategori dari kabel UTP. Yang paling baik adalah kategori 5.
Ada dua jenis kabel, yakni straight-through dan crossed. Kabel Straightthrough
dipakai untuk menghubungkan komputer ke Hub, komputer ke
Switch atau Switch ke Switch. Sedangkan kabel crossed digunakan untuk
menghubungkan Hub ke Hub atau Router ke Router. Untuk kabel kategori 5,
ada 8 buah kabel kecil di dalamnya yang masing-masing memiliki kode
warna. Akan tetapi hanya kabel 1,2,3,6. Walaupun demikian, ke delapan
kabel tersebut semuanya terhubung dengan jack.
Untuk kabel straight-through, kabel 1, 2, 3, dan 6 pada suatu ujung juga di
kabel 1,2,3, dan 6 pada ujung lainnya. Sedangkan untuk kabel crossed, ujung
yang satu adalah kebalikan dari ujung yang lain ( 1 menjadi 3 dan 2 menjadi
6).
Kabel koaksial
Media ini paling banyak digunakan sebagai media LAN, meski lebih mahal dan
lebih sukar dibanding dengan UTP. Kabel ini memiliki bandwith yang lebar,
oleh karena itu dapat digunakan untuk komunikasi broadband. Ada dua buah
jenis kabel koaksial, sebagai berikut:
a. Thick Coaxial
Kabel jenis ini digunakan untuk kabel pada instalasi Ethernet antar
gedung. Kabel ini dapat menjangkau jarak 500 m bahkan sampai 2500 m
dengan memasang repeater.
b. Thin Coaxial
Kabel jenis ini cocok untuk jaringan rumah atau kantor. Kabel ini mirip
seperti kabel antenna TV, harganya tidak mahal, dan mudah dipasangnya.
Untuk memasangnya, kabel ini menggunakan konektor BNC. Pada
jaringan jenis ini, untuk melakukan sambungan ke masing-masing
komputer menggunakan konektor T.
Serat Optik
Jaringan yang menggunakan F/O biasanya digunakan pada perusahaan besar.
Hal ini disebabkan karena mahal dan pemasangannya sulit. Akan tetapi,
jaringan dengan media ini memiliki kehandalan yang sangat baik dan
kecepatan yang sangat tinggi ( sekitar 100 Mbps). Keunggulan lainnya adalah
bebas dari gangguan lingkungan. Pembahasan mengenai serat optik ini akan
dibahas secara lebih rinci pada bagian selanjutnya.
Kabel Telepon
Kabel telepon adalah media yang digunakan untuk LAN beberapa tahun
terakhir. Kabel ini biasanya digunakan untuk menghubungkan jaringan antar
gedung. Kabel telepon yang digunakan untuk diluar gedung ini biasanya
dilengkapi dengan 3 kawat, dimana 2 kawat digunakan untuk penghubung
data, sementara yang satu lagi digunakan untuk mencegah agar kawat-kawat
tidak putus jika dibentang. Konektor untuk kabel telepon adalah RJ-11
Pemilihan Kabel
Pada bagian sebelumnya, telah disinggung mengenai beberapa jenis kabel jaringan.
Pada bagian ini akan dibahas cara memilih jenis kabel.
Biasanya, kabel yang sudah tertanam tidak akan diangkat atau dipindahkan selain
dalam keadaan terpaksa. Oleh karena itu, perlu dilakukan sebuah perencanaan
untuk menentukan jenis kabel yang akan digunakan. Suatu kendala akan terjadi,
jika terjadi kesalahan dalam pemilihan kabel.
Apabila akan membangun suatu jaringan, tentukan jenis dan kualitas kabel yang
baik sehingga dapat membuat jaringan berjalan dengan baik hingga 10 tahun atau
lebih. Selain jenis, masalah kecepatan dan jarak akses data perlu diperhitungkan.
Di bawah ini adalah beberapa jenis kabel jaringan, kecepatan, jarak, dan konektor
yang digunakan.

PERTANYAAN
Gambarkan sebuah arsitektur jaringan dimana gambar tersebut harus terdiri atas:
1. Komputer server
2. Komputer client
3. Hub 
4. Switch
5. Access point
6. Router
7. Bridge
8. Serat Optik
9. Repeater
Gambar bisa menggunakan microsoft visio atau yang lainnya dan dikirim by email